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1. SUMMARY

Numerical and analytical micromechanical models are presented to predict the thermo-

elastic behavior of a textile composite. In the numerical model, the unit-cell is discretized

with finite elements, and periodic boundary conditions are imposed between opposite faces of

the unit-cell. For a thin textile composite, stress gradients effects through the thickness are

demonstrated. The consequent difference in the stiffness and strength behavior of thick and

thin composites are discussed. The numerical model is implemented to predict the 3-D

thermo-elastic constants for a thick textile composite, and the plate thermo-mechanical

properties for a thin textile composite. The numerical model is extended to compute the

thermal residual microstresses due to processing and to predict the composite failure

envelopes. An analytical model - Selective Averaging Method (SAM) - is proposed, which is

based on a judicious combination of stiffness and compliance averaging to estimate the 3-D

elastic constants. Both the models are tested and verified for several examples by comparing

the stiffness properties with elasticity solutions and available results.

2. INTRODUCTION

The increasing demand for lightweight yet strong and stiff structures has lead to the

development of fiber reinforced composites. These materials are not only used in the

aerospace industry but also in variety of commercial applications like automobile, marine and

biomedical applications. However the manufacture of fibrous laminated composites from

prepregs is labor intensive. Besides, fibrous laminated composites lack through the thickness

reinforcement, and hence have poor interlaminar shear strength. Recent developments in

textile technology shows some promise in overcoming the above limitations. Three-

dimensional woven and braided composites provide multidirectional reinforcement, thus

enhancing the strength and stiffness in the thickness direction. Textile manufacturing

processes such as weaving and braiding in conjunction with resin transfer molding are also

suitable for the production of intricate structural forms at a reduced turn-round time.

*Work done on grant at the University of Florida, NAG-l-1226.
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With the advancements in aforementioned technologies there is a need to develop

scientific methods of predicting the performance of the composites made using the above

processes. There are numerous variables involved in textile processes besides the choice of

the fiber and matrix materials. This, for example, includes the number of filaments in the yarn

specified by the yam linear density and the yarn architecture within the unit-cell determined

by the type of weaving or braiding processes. Thus there is a need for analytical/numerical

models to study the effect of these variables on the textile composite behavior. Ideally a

structural engineer would like to model textile composites as a homogeneous anisotropic

material - preferably orthotropic - so that the structural computations can be simplified, and

also the existing computer codes can be used in the design. This would require the prediction

of the effective (macroscopic) properties of the composites from the constituent material

(microscopic) characteristics such as fiber and matrix properties, fiber-matrix interface

characteristics and the fiber architecture. This is possible if we assume that there is a

representative volume element (RVE) or an unit-cell that repeats its self throughout the

volume of the composite, which seems to be true in the case of textile composites. Ishikawa

and Chou (1982; 1983a; 1983b), Yang and Chou (1987), Ma, Yang and Chou (1986), have

proposed several models for estimating the thermoelastic and mechanical properties of woven

and braided composites. Yoshino and Ohtsuka (1982), Dasgupta et al. (1990) and Whitcomb

(1991) analyzed the unit-cell of textile composites using three-dimensional finite elements to

predict the overall macroscopic behavior of the composites. Their models can be used to

predict both stiffness and strength properties. In the present paper, we have demonstrated

numerical models to predict the stiffness and strength behavior of textile composites. An

approximate analytical method is also described to estimate the stiffness properties of a textile

composite.

3. FINITE ELEMENT MODELS FOR THERMO-MECHANICAL PROPERTIES

In this section, we demonstrate micromechanical models utilizing finite elements to

predict the effective stiffness properties and coefficients of thermal expansion (CTE's) for a

textile composite. The macroscopic properties of the composite are determined at a scale

much larger than the dimensions of the unit-cell, but comparable to the dimensions of the

structural component. The average stresses at a point at the structural scale will be called the

macroscopic stresses or macrostresses. The actual stresses at a point at the continuum level

will be called the microscopic stresses or microstresses.To distinguish the macroscopic

deformations and stresses from their microscale counterparts - a superscript "M" will be

used to denote the macroscopic deformations and stresses.

3.1 Unit-Cell Analysis for Three-Dimensional Elastic Constants

The unit-cell analysis assumes that the material is subjected to a uniform state of strain

in the macroscopic sense. The average stresses required to create such a state of strain is

computed from the finite element model of the unit-ceil. In the microscale, all unit-cells have
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identical stress and strain fields. Continuity of stresses across the unit-cell then requires that

tractions be equal and opposite at corresponding points on opposite faces of the unit-cell.

Since the displacement gradients are constant for a homogeneous deformation, the

displacements at corresponding points on opposite faces of the unit-cell differ only by a

constant.

Consider a rectangular parallelepiped as the unit-cell of the three-dimensional textile

composite. The edges of the unit-cell are assumed to be parallel to the coordinate axes x 1, x 2

and x3, with unit-cells repeating in all three directions. The length of the unit-cell in the xi

direction is defined as L i. On the macroscale the composite is assumed to be homogeneous

and orthotropic and the composite behavior is characterized by the following constitutive
relation :
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where {o-M} and {a M} are the macroscale stresses and strains respectively; {(x s} and [C] are

the macroscale CTE's and orthotropic elasticity matrix to be determined; AT M is a uniform

temperature difference throughout the unit-cell.

3.1.1 Periodic Boundary Conditions

The periodic BC's consist of the periodic displacement boundary conditions which

ensure the compatibility of displacements on opposite faces of the unit-cell, and the periodic

traction boundary conditions to enforce the continuity of stresses. A macroscopically

homogeneous deformation can be represented as

u_ = Huxy ij=1,2,3 (2)

where Hii are the displacement gradients. Then the periodic displacement boundary conditions

to be imposed on the faces x:O and xi=L i are

u i (L l ,Xz,X3) - ui (O,x2,x3) = HIlL 1

U i(XlSJ-,2s,_3) - Ui(X1,0_ 3) = Hi2L 2 (3)

u i(xl,x.z,L3) - uj(xl,x2,0) = H.tjL 3
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The traction boundary conditions to be imposed on the faces xi=O and xi=Li are

--

F (xpC2,x3)---e (xpO,x3) (4)

F (x,,x2,C3)---F (xx,X2,0)

The above periodic BC's are imposed in the finite element model by using multi-point

constraint elements or by using transformation equations to eliminate the constrained

displacements (Cook et al., 1989). Both methods require a finite element model with

corresponding nodes on opposite faces of the unit-cell.

3.1.2 Determination of Three-Dimensional Elastic Constants and CTE's

The unit-cell is discretized with three-dimensional finite elements such that opposite

faces of the unit-cell have identical nodes. Periodic displacement and traction boundary

conditions are enforced between the corresponding nodes. The periodic displacement BC's are

imposed such that only one of the components of the macroscopic strains is non-zero; and the

uniform temperature difference AT M is set to zero. Then, the difference in displacements

between corresponding points on opposite faces of the unit-cell will be equal to that in a

homogenous continuum subject to the same deformation. The average stresses (macroscopic

stresses) required to create such a deformation are obtained from the finite element results.

Substituting the macroscopic stresses and strains in the composite constitutive relation Eqn.

(1) the stiffness coefficients in the column corresponding to the non-zero strain can be

evaluated. This procedure is repeated for other macroscopic strain components (keeping the

temperature difference zero) to obtain the entire stiffness matrix [C]. The orthotropic elastic

constants of the composite material can be easily determined by inverting the stiffness matrix,

and comparing the compliance coefficients with that of an orthotropic material.

To compute the six CTE's, a finite temperature change TO is applied to all the elements

in the unit-cell; and periodic displacement BC's are imposed such that all the macroscopic

strain components are zero. Then the composite constitutive rel_ation Eqn. (1) will reduce to

{oM}= ro (s)
The macroscopic stresses for such a deformation are computed as described below. Knowing

the stiffness matrix [C], the composite CTE's are found as

{,:}= (6)
O

Table 1 presents the non-zero displacement BC's imposed on the unit-cell to obtain [C] and

the CTE's {(x'}.

The macroscale stresses for a given deformation state can be found by one of the

following two methods. In the first method, the macroscale stresses are obtained by averaging

the nodal forces on each face of the unit cell. For example, the macroscale olY can be
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obtained as

u /.,21,3 ,)(Ll,x2,x°11 = --ZnF_ 3) (7)

where F/") is the nodal force in the xl direction at the nth node, and _, denotes summation

over all nodes on the face x_=L r Alternately, the macroscopic stresses can be computed by

volume-averaging the corresponding microstress component in the unit-cell. Then the

macroscale (_M is obtained as

l fo11(x,y,z)dV (8)Oll =

V V

where V is the volume of the unit-cell. The microstresses are computed at the quadrature

points, and numerically integrated over the volume in each element of the unit-cell.

3.1.3 Results and Discussion for 3-D Elastic Constants and CTEs

Example 1.

Example 2.

Example 3.

The above procedure was demonstrated for the following materials:

isotropic material

bimaterial medium - both materials are assumed isotropic

unidirectional composite with identical poisson ratios for fiber and matrix -

Example 4.

Example 5.

Example 6.

fiber and matrix materials are

unidirectional composite with
fiber and matrix materials are

plain-weave textile composite

Dasgupta et al., 1990)

plain-weave textile composite

Naik, 1994)

isotropic

different poisson ratios for fiber and matrix -

isotropic

(yarn geometry and properties obtained from

(yarn geometry and properties obtained from

Example 7. 5-harness satin weave (yam geometry and properties obtained from Naik, 1994)

For the textile composite examples, i.e, examples 5-7, the yarn is assumed to be transversely

isotropic and the matrix material is assumed isotropic. The constituent material properties for

the examples are listed in Table 2.

A 3-D finite element code called pTEz-20 (pronounced as mutech) was written and

implemented for the seven examples to compute the homogeneous elastic constants and

CTE's. The unit-cell was divided into uniform eight noded hexahedral elements. The element

stiffness matrix (/C') was formulated as

K • = fvBrCBdV e

+1+1+1

=fff BTCBIJId{drld{ (9)
-1-1-1
N N N

" E E E  WjW erC( ,n,OBISl
i=1 j--1 k=l

where V* is the domain of the element, B is the strain-displacement transformation matrix, C
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is the elasticity matrix, N is the number of Gauss points used for integration, W is the
Gaussian integration weight factor and IJI is the determinant of the Jacobian. The material

property at each Gauss point (_,_,_) was determined, and the corresponding elasticity matrix

was used to perform the volume integration. The element stiffness matrix thus represented the

averaged properties of the constituent materials in that element. The computed elastic

constants for the seven examples are listed in Tables 3-5.

The bimaterial medium consisted of two different layers of equal thickness in the xy-

plane alternating in the z-direction (Fig. 1). The effective Youngs moduli, Poisson ratios and

CTE's of the bimaterial medium were derived exactly as described below. The constitutive

relation (considering only the normal stresses) for each layer was defined as

°:f
O_ j

c;, c:,
c'=c"
c?, c', %.1

i = 1,2 (10)

where the superscript refers to the layer number. To derive C11, C_2 and C13 for the bimaterial

medium, E= M was assumed as one; and _.yyMand E=M as zero.The assumption of E=M=0

implied that e=l= _E,2. The following constraints were, in addition, imposed across the
bimaterial interface •

I 2 M

1 2 u (11)

1 2 M
0.: ' = OZ_ = O.r

From the above interfacial constraints and Eqn. (10), the stresses in each layer were

computed. The stresses in the layers were volume-averaged to yield the corresponding

macroscopic stresses, i.e, G= M, Gyy" and G=". Since e,., M was equal to unity, the computed

macroscopic stresses were identical to the stiffness coefficients C n, C12 and C_3. A similar

procedure was followed to find the remaining stiffness coefficients and CTE's for the

bimaterial medium. The inplane shear modulus of the bimaterial medium was computed as

G,y= (GI+ G2)/2 knowing that the shear strain was uniform in both layers. The isostress

assumption was used to derive the transverse shear modulus as Gxz= 2GzG 2 / (Gz+G2). It was

found that I.tTEZ-20 results were identical to the elasticity results for the bimaterial medium

(Table 3).

Table 4 presents the elastic constants and CTE's for the two unidirectional composite

examples. The unidirectional composite unit-cell is shown in Fig. 2. The unidirectional

composite properties were compared with available analytical solutions. The rule of mixtures

formulae were used to predict E L and VLr ; the Halpin-Tsai equations (Halpin and Tsai, 1969)

for Ev G_.r and vrr and Schapery's expressions (Agarwal and Broutman, 1990) for the thermal
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coefficientsotLand o_r. The relations for E L, VLr and o_L are exact when the poisson ratios are

identical for the fiber and the matrix. The reason for the discrepancy in example 3 is that a

point-location subroutine in/_TEz-20 identified a fiber volume fraction of 0.595, whereas the
actual fiber volume fraction was 0.6.

The elastic constants for the three textile composite examples are presented in Table 5.

Figures 3 & 4 illustrate the weave patterns for the plain-weave (examples 5 & 6) and the 5-

harness satin weave (example 7) respectively. The properties for example 5 were compared

with Dasgupta's results for an overall fiber volume fraction (Vy) of 0.26. The yam properties

were not specified in Dasgupta et al. (1990). So the rule of mixtures and Schapery's

expressions were used to obtain the yarn properties from the given fiber and matrix

properties. The/_ TEz-20 results for examples 6 and 7 were compared with TEXCAD - an

approximate analytical method developed by Naik (1994). In both the examples the overall

fiber volume fraction was 0.64. It must be noted that/_TEz-20 will marginally under-predict

the stiffness moduli - since the yarn cross-section in the numerical model is approximated as

a polygon inscribed within the actual cross-sectional area. Consequently the yarn/fiber volume

fraction in the numerical model will always be lesser that the theoretical volume fraction.

3.2 Stress Gradient Effects

The methods explained in Section 3.1 assume that the unit-cells exist in all the three

directions. This will be true in the case of thick textile composites. However there are many

applications in which thin composites are used. In fact in order to take advantage of the

properties of composites, the structures have to be made of thin plate like members with
stiffeners for load transfer. In such cases there will be fewer unit-cells in the thickness

direction. Thus the free surface effects will be predominant. There will be severe stress

gradients through the thickness, and they will have an influence on the apparent stiffness and

strength of the structure.

The following simple example will illustrate the stress gradient effects on stiffness.

Consider a layered medium consisting of alternating layers of materials of equal thickness

with Young's moduli E 1 and E 2 respectively (Fig. 5a). Any micromechanical model would

predict that the medium can be considered as a homogeneous orthotropic material at

macroscale and also the effective Young's modulus in the longitudinal direction is (El+E2)/'2,

and there would not be any bending-stretching coupling in the principal material direction.

However, if we consider a bimaterial beam consisting of the same two materials (Fig. 5b), we

will find that there is a bending-stretching coupling, and also the flexural rigidity cannot be

predicted from the Young's modulus of the homogeneous orthotropic medium and the total

beam thickness. The bimaterial beam has properties and behavior different from the

corresponding infinite medium. This phenomenon is observed in the transverse shear behavior

also (Sankar and Marrey, 1993). A similar behavior is also expected in thin textile composites

where there are fewer unit-cells in the thickness directions, and the unit-cells are not

subjected to a macroscopically homogeneous state of deformation as assumed in Section 3.1.

The effect of stress gradients on stiffness and strength of thin textile composites are discussed
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in Marrey and Sankar(1993a).

Onemethodof overcomingthe abovedifficulties in thin textile compositesis to model
the compositeasa plate/beam,andcomputethe structuralstiffnessproperties(eg., [A], [B]
and[D] of the plate)directly from theunit-cell analysisinsteadof the continuumstiffness
properties(Young'smodulus,shearmodulusetc.). In the following sub-sectionswe illustrate
theseconcepts- first for a thin textile compositemodeledasa beam,andthen for a textile
compositeplate.The purposeof the beammodel is to presentthe issuesinvolved in
computingthe structuralstiffnesscoefficients.Further theperiodicBC's aredifferent from
thosein the continuummodel.

3.3Unit-Cell Analysis for BeamThermo-MechanicalCoefficients

The textile compositebeamis assumedto be in the xz-plane with unit-cells repeating

in the x-direction. A state of plane strain parallel to the xz-plane is assumed. On the

macroscale it is assumed that the beam is homogeneous and its behavior can be characterized

by the following beam constitutive relation :

Lr,3r23 r 3j tv0J / vJ

(12)

where P, M and V are the axial force, bending moment and transverse shear force resultants

respectively; [K] is the symmetric matrix of beam stiffness coefficients; e0M, KM and y0_' are

the midplane axial strain, curvature and transverse shear strain respectively; o_p, o_v and o_u

respectively are the thermal expansion, thermal shear and thermal bending coefficients. The

midplane deformations are related to the midplane axial displacement u o, transverse

displacement w, and rotation qJ as:

u Ouo __ O_ u Ow
¢o - aX _ Yo = * +- (13)_ aX

Actually K1v K12, K22 and K33 are similar to the laminate stiffness coefficients A11, Blv D H and

_As5 respectively. The beam constitutive relation in Eqn. (12) can also be expressed in terms

of compliance coefficients as

(14)

t_t tsISll S12 _13] {M} t_Pt
= ] 12S22 / + Aa' 

_0 J 13 S23 S33J L'ZvJ
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As discussed earlier, the unit-cell analysis assumes that all the unit-cells are subjected

to identical stress and strain fields, for a given state of loading. This is true in the case of

constant axial force (P) and constant bending moment (M) in the beam. However, when a

shear force (V) is applied to the beam, the shear force will give rise to the building up of

bending moment at every cross-section, such that V = - (dM/dx). This situation created

difficulties in estimating the shear stiffness of the beam accurately.

The detailed procedures for evaluating [K] and the beam CTE's are explained in

Sankar and Marrey (1993) and Marrey and Sankar (1993b). However the principles involved

in finding the beam stiffness matrix [K] are described briefly for the sake of completion.

Three linearly independent deformations are applied to the unit-cell namely,

Case (i) unit axial strain (e0 = 1, _ = 0, TO= 0)

Case (ii) unit curvature accompanied by transverse deflection such that the transverse

shear strain was zero (E0= 0, _ = 1, TO= 0)

Case (iii) unit transverse shear strain (e0= 0, _c = 0, To= 1)

The periodic displacement boundary conditions for the three unit deformations are given in

Table 6. The temperature change, AT, is assumed to be zero. The top and bottom surfaces of

the unit-cell are considered as free surfaces. For each case, the axial force P, the bending

moment at the center of the unit cell M, and the shear force V are computed. Since the

bending moment varies linearly along the unit cell, the bending moment at the center will be

the average of the bending moments at the left and right ends of the unit cell. By substituting

the values of P, M and V in Eqn. (12), one can evaluate the stiffness coefficients.

3.3.1 Beam Results and Discussion

The procedures to obtain the beam coefficients were implemented for the following

cases:

(a) an isotropic beam; (b) a bimaterial beam with isotropic layers of equal thickness; (c) a

plain weave textile composite beam where the yarn is assumed to be transversely isotropic

and the matrix is isotropic. The properties of the constituent materials for all the cases are

listed in Table 7. The dimensions of the unit-cell and the yarn architecture for the textile

beam were taken from Yoshino and Ohtsuka (1982). The same unit-cell dimensions (length of

3.6 mm and height 1.8 mm) were also used for the isotropic and bimaterial cases.

The unit-cell of the beam was discretized using eight-noded isoparametric plane strain

finite elements. The finite element mesh for the isotropic unit-cell and the plain weave unit-

cell were identical except that different material properties were used. The deformed plain

weave unit-cell under various independent loading conditions is shown in Fig. 6.

The stiffness and thermal coefficients for the three beams examples are shown in

Table 8. The results for the isotropic and bimaterial beams were compared to exact beam

theory solutions. Exact shear correction factors - 0.833 for the isotropic beam and 0.555 for

bimaterial beam were used in the beam theory solution to compute the shear stiffness

(Whitney, 1973). It can be seen that the beam unit-cell analysis is able to predict the axial

and bending stiffness coefficients (Kll and K22 ) very accurately. As expected the shear

stiffness (K33 or A55) predictions have errors, but they are very minimal. The textile beam
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stiffness coefficients were also estimated using a procedure similar to the mosaic model

(Ishikawa and Chou, 1982). They are compared with the coefficients obtained from the unit-

cell analysis as shown in Table 8. It can be seen that the mosaic model predicts K3j

reasonably well. The reason for the lack of agreement in K11 and K22 can be attributed to the

fact that a major portion of the yam is modeled as a 0 ° laminate in the mosaic model, which

tends to over-predict the axial and flexural stiffness.

The shear modulus of the plain-weave beam Gx_ was found by imposing periodic

boundary conditions between the top and bottom surfaces, and left and right ends of the unit-

cell. This would yield the apparent shear stiffness as Gxzh=5.53 x 106 Nm -z - whereas the

actual shear stiffness is 9.21 x 106 Nm -I (K33 in Table 8). The Young's modulus of the textile

beam Ex may be extracted from K1_, as KJh, which would yield Ex=15.42 GPa. If this value

of E x were used to predict the homogeneous flexural stiffness as D1_=E,,h3/12, we would

obtain D H as 7.50 Nm - whereas the actual flexural stiffness is equal to 5.41 Nm. The same

idea holds for the beam thermal coefficients also. The beam CTE's ,i.e, CXp,_M and _v cannot

be predicted from the corresponding continuum CTE's. Table 9 shows the disagreement for

the plain-weave example between the beam CTE's obtained directly, and the beam CTE's

predicted from the corresponding continuum CTE's. It may be noted that the continuum

model would always predict the thermal expansion coefficient cxe as _x, and the thermal

bending coefficient cxu as zero. This underscores the importance of the present analysis for

predicting the beam stiffness properties for a thin textile composite directly.

3.4 Unit-Cell Analysis for Plate Thermo-Mechanical Coefficients

In this section we describe a procedure to find the stiffness and thermal properties of a

textile fabric modeled as a structural composite plate. The textile composite plate is assumed

to be in the xy-plane with unit-cells repeating in the x and y directions. The lengths of the

unit-cell in the x- and y-directions are assumed to be a and b respectively and the unit-cell

thickness as h. On the macroscale the plate is assumed to be homogeneous and the plate

behavior is characterized by the plate constitutive relation:

/111 AI2 /116 BII BI2 B16

AI2 A22 A26 BI2 B22 9261
I

A16 A26 A66 B16 B26 B66]

/Bll B12 B16 Dll D12 Die

I

.B16 B26 B66 D16 /)26 966]

• M

M
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M

M

M

P
(Xx
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N

N,

M,

(15)
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whereEi0M,Ti0M and _:M are the midplane axial strain, shear strain and curvature; o_F and 13f

are the plate thermal expansion and bending coefficients; Ni and M_ are the axial force and

bending moment resultants respectively in the homogeneous plate: The midplane strains and

curvatures are related to the midplane displacements and rotations as:

_ _ + _ (16)
, ¢_ - , ¥xyO-ax ay ay ax

• t a_x _t at_y _t adix a_y (17)
--_ %1.

r'x- ar,' ay' ay ax

3.4.1 Unit-Cell Boundary Conditions

....... I_ ...... k.-:^nl ..... _; ..... _r_ nhtninad hv modeline the unit-cell with

eight-noded brick elements and subjecting the unit-cell to linearly independent deformations.

The unit-cell was subjected to minimum support constraints to prevent rigid body rotation and

translation. The top and bottom surfaces of the plate were assumed to be free of tractions.

The faces x=O and x=a had identical nodes in the finite element model, and so did the pair of

faces y=O and y=b. The identical nodes on opposite faces of the unit cell were constrained to

enforce the periodic BC's. The traction boundary conditions on the lateral faces of the unit-
cell were:

Fi(a,y,z ) =-Fi(0,y,z), Fi(x,b,z) = -Fi(x,O,z), i=x,y,z (18)

The periodic displacement BC's enforced for the deformations are presented in Table 10.

3.4.2 Determination of Plate Stiffness Coefficients and CTE's

Linearly independent deformations are applied to the unit-cell such that only one of

the six components of deformation is non-zero (first six cases in Table 10). The temperature

difference is set to zero for all six cases. It must be noted that the applied deformations must

ensure that the transverse shear strains, T_M and TyM are zero where

M OW

ax

u Ow

Oy

(19)

The force and moment resultants can be obtained by averaging the nodal forces on each face
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of the unit cell. For example, on the face x=a the force and moment resultants are computed

using the relations:

Nx = _, Fx(O(a,y,z), (20)
i=1

M x = _,Z FJO(a,y,z), (21)
i=1

where F_(° and Fy(i) are the nodal forces in the x and y directions at the i'h node and 'n' is the
total number of nodes on the face. The force and moment resultants can also be computed by

averaging the microstresses over the unit-cell volume. Then the resultants on the face x=a are
obtained as

Nxy = i_Fy(O(a,y.z)

M_ = .= z Fy(O(a,,y,z)

Mxy _ 1, f zxxy(x,y,z)d V (23)
ao_

the force resultants in the plate constitutive

Nx- ao_lro < ,y )av = (22)

M,- l fzo=(x y, )dv
ao" v

Substituting the values of the deformation and

relation, Eqn. (15), the stiffness coefficients in the column corresponding to the non-zero

deformation can be computed. This procedure is repeated for other deformation components
to obtain all the stiffness coefficients.

To predict the CTE's, the plate unit cell is subject to a uniform temperature difference,

given by AT = To. In the finite-element model, periodic displacement BC's are applied such

that all six components of the deformation are zero (seventh case in Table 10). The force and

moment resultants are computed using one of the procedures described above. The thermal

expansion coefficients o_p, and thermal bending coefficients _ are then obtained from the
relation:

_P 1 A B N (24)

_p To B D M

3.4.3 Results for Plate Stiffness Coefficients

The plate [A], [B], [D] matrices and CTE's were found for the seven examples listed in

Table 2 by implementing the finite element code IzTE_,-20. The plate properties for the

isotropic and bimaterial cases are presented in Tables 11 and 12 respectively. The bimaterial

plate properties were also computed using the lamination theory for two plies, and from the

3-D elastic constants (Table 12). For example the coefficient D11 is obtained from the 3-D
elastic constants as

EMh 3
Dll -

M2

12(1 - vxy )
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The finite elementresultsfor thebimaterialcasewereexact, i.e, identical to the results

obtained with the two-ply lamination theory. The [A] and [D] matrices computed from the

bimaterial 3-D constants were found to be in good agreement With the two-ply lamination

theory only because both the layers were equal in thickness. In-general, however the plate

properties obtained from the 3-D elastic constants would be different from the two-ply

lamination theory results. The plate properties for the unidirectional composite examples are

presented in Table 13 and for the textile examples in Table 14. In all the examples it was

found that the plate properties, especially [B], DlI, {o_p} and {_} could not be predicted

from the corresponding 3-D elastic constants.

4. FINITE ELEMENT MODELS FOR STRENGTH PROPERTIES

In the previous sections, we had demonstrated methods to model a general textile

...... ;*_. ,_;_h ..... thr,_-rllm_n_innal rnatorlal nr a_ a thin plate/beam to oredict theirvi-'_,,sJtix_l.P_.Pol_v VA_AAVA _ _ ...........................

corresponding thermo-mechanical coefficients. In this section we extend the same numerical

models to compute the thermal residual stresses due to processing in the yams and the matrix.

Then the numerical models are used to study the strength behavior of the composite

by predicting the failure envelopes for thin and thick textile composites.

4.1 Thermally Induced Residual Microstresses

The mismatch in the CTE's for the constituent materials in the composite induces the

residual microstresses in the yam and matrix. The difference between composite curing

temperature and room temperature then serves as the driving force to create these

microstresses.The microstresses inthe vicinity of the yam-matrix interface are particularly

important as they could lead to failure due to debonding. Since composites designed for high
temperature applications are fabricated at higher temperatures, the residual microstresses

become particularly relevant in the strength considerations of such composites.

4.1.1 Determination of Residual Microstresses

Let TO be the difference between room temperature and the composite fabrication

temperature. Since the composite is stress free at the fabrication temperature, which is above

the room temperature, TO is generally negative. The residual microstresses in the yam and the

matrix are obtained by superposing the microstresses due to the two load cases as explained

below. In the first load case, the unit-cell is constrained from expanding by fixing the comer

nodes of the unit-cell and enforcing zero displacement difference between corresponding

nodes on opposite faces of the unit-cell (periodic displacement BC's). A temperature

difference To is applied to all elements in the finite element model. This is exactly the same

problem we solve for finding the three-dimensional CTE's. The applied boundary conditions

mean that all the macroscopic strain components are equal to zero ( { _} = 0, AT M = To).

Then the corresponding macroscopic stresses required to restrain the unit-cell expansion are
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given by

{o'5= (26)

In the second load case, deformations are applied so as to reverse the macroscopic stresses

developed in the first load case. This can be accomplished by imposing the deformations

{E_t} - {o_s} To and ATe=0. It can be noted that the macroscopic stresses developed in the

second loading case [C]{o_S}To are equal and opposite to the macrostresses in Eqn. (26). The

microstresses from both load cases are superposed to obtain the residual stresses due to free

thermal expansion.

The same idea can be extended to finding the residual microstresses in the plate

model. Then the deformations to be applied in the first load case are {e u} = 0, {r u} = 0 and

A:1_ = To; and the deformations in the second load case are {eM} - {ctp } T o , {K"u } = {[Y'}

To and AT _ = 0. The residual microstresses were computed for the plain-weave textile beam
at the Gaussian center of the elements in the unit-cell. Figure 7 shows the thermal stress

contours for if=, _,, and Xxz. The composite curing temperature was assumed to be 150°C

above room temperature.

4.2 Strength Modeling of Textile Composites

There are many failure criteria or strength theories for unidirectional fiber composites.

This for example includes (Agarwal and Broutman, 1990) maximum stress theory, maximum

strain theory, Tsai-Hill theory. Even though failure of a material is a very complex

phenomenon, engineering strength theories such as mentioned above have been found to be

useful in design. The interpretation of strength values obtained from such theories are

different for different materials. For example in metal matrix composites the failure envelope

obtained using the above theories will correspond to the initial yield surface (Dvorak et al.,

1973). In graphite/epoxy composites the failure theories can be used to predict fiber or matrix

failure. In the present study our intent is to explore the possibility of developing such failure

criteria for textile composites.

4.2.1 Determination of Composite Failure Envelope

Our approach is similar to that used by Dvorak et al. (1973). A state of homogeneous

deformation, corresponding to each of the six macrostrain components, are independently

applied to the unit-cell by imposing the boundary conditions explained in Section 3.1. For

each case, the various stress components are computed in the elements in the unit-cell -

typically at the element Gaussian integration points. These stresses will be referred to as

microstresses. Assuming linear elastic behavior, the microstresses can be computed for any

arbitrary combination of the macrostrain components. Since we know the macroscopic elastic

constants, we can find a relation between microstresses at a point and any arbitrary state of
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macrostress as:

{a} = [F] {oM} (27)

[F] can be considered as a matrix of influence coefficients, which is evaluated at the

integration points of all the elements in the unit-cell. We also assume that the failure behavior

of the matrix material and the yarn is known. For instance, let the failure criterion of the

matrix be given by [H] {C}matnx = 1. Then the failure criterion for the composite is obtained

from Eqn. (27) as [H] [F] {o _} = 1. The same idea also applies for the yam. The textile

composite is assumed to have failed, if there is failure on the microscale in any one of the

constituent materials - either matrix or the yam. By varying the macrostresses using a

numerical simulation, failure envelopes can be obtained for the idealized homogeneous

material. It might be noted that Eqn. (27) can be modified to include the thermal residual
stress field in the unit-cell as

= IF1 {ou}-loT T. (2S)
• -j

where {or} is the matrix of thermal microstresses computed at the element integration point

for a temperature difference of To.

4.2.2 Effect of Stress Gradients on Strength

The strength analysis for a three-dimensional composite can extended for thin

composites using the plate model. As mentioned in Section 3.2, the macroscopic stresses will

not be homogeneous thorough the thickness in such composites. Then the composite failure

will be determined by the stress gradients through the thickness, represented by the averaged

force resultants (F) and moment resultants (M). The composite failure criterion will be of the
form

= 1 (29)

Thus the failure envelope of the composite will be in the six-dimensional space of the force

resultants and the moment resultants. The above procedure was demonstrated using the beam

model, for the case of a plain-weave textile composite.

4.2.3 Beam Failure Envelope Results

The strength properties used for the constituent materials in the beam are as follows:

Yarn: CLr=1725 MPa, (_LC=1366 MPa, (_rr=42 MPa, (_c=230 MPa, XLr=95 MPa

Matrix: (_r=70 MPa, (_c=100 MPa

where the superscripts 'T' and 'C' refer to the tensile and compressive strengths respectively.

The maximum principal stress criterion was used to determine the matrix failure and the

maximum strain theory for unidirectional fiber composite was used for the yam. Both

continuum and structural failure envelopes were developed. Figures 8 and 9 depict the
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structural failure envelopes in the P-M space. If we assume that the beam is made of a

homogeneous but orthotropic material with properties as predicted by the continuum model,

then one can derive structural failure envelopes from the continuum failure envelopes using

simple beam theories. The derived structural failure envelopes are compared with that

obtained from direct micromechanical analyses in Figs. 10 and 11 respectively. One can note

that the continuum failure criteria are very conservative for the case of a thin beam.

5. ANALYTICAL MODELS FOR STIFFNESS PROPERTIES

The complex yarn architectures in a textile composite make numerical modeling of

the unit-cell extremely difficult. Analytical methods are popular because they are easy to

model and suitable for performing parametric analysis. However these methods are

approximate because they assume a certain state of stress or strain in the unit-cell. Averaging

the stiffness or compliances of the matrix and the inclusion has been used to estimate the

bounds of effective elastic properties of the composite. Essentially the stiffness averaging

assumes a state of uniform strain in the composite (isostrain), and compliance averaging

assumes a state of uniform stress (isostress) in the matrix and inclusion. In fact the rule of

mixtures expressions for estimating the effective properties of a unidirectional composite is

based on such averaging schemes. These methods are too simplistic, because the state of

stress/strain in a textile composite under a uniform macrostress is much more complex. We

propose a scheme of selective averaging in which both stiffness and compliance coefficients

can be averaged selectively depending on a more realistic assumption of either isostress or

isostrain.

5.1 Selective Averaging Method (SAM)

Consider a rectangular parallepiped of dimensions axbxc as the unit-cell. To find the

first column of the effective stiffness matrix, the unit-cell is divided into slices (mesolevel) of

thickness d parallel to the yz-plane (Fig. 12a). Each slice is further sub-divided into elements

(microlevel) as shown in Figs. 12(b) and 12(c). In this section, to distinguish between the

macrolevel, mesolevel and microlevel properties, an over-tilde is used to denote the mesolevel

properties, and a superscript "M" is used to denote the macrolevel properties. For example,

[cM], [(_] and [C] will represent the macrolevel, mesolevel and microlevel stiffness

respectively. The unit-cell is subjected to a deformation such that all macrostrains except e_xM

are equal to zero and e_,u= 1. It is assumed that the mesolevel and microlevel strains,

corresponding to the zero macrostrains, are negligible.

M
ei = _i = e_ = 0 i_1 (30)

The average stiffness of a slice can be obtained based on the isostrain assumption within the

slice (e=(x,y,z) = _, (x)) as :
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1ffc11   )  (31)

where C11(x,y,z) is the element stiffness coefficient transformed to the unit-cell coordinates.

The stiffness of the slices are averaged on the macrolevel based on the isostress assumption,

i.e., {3x_(x) = axxM. Thus the first column of the effective stiffness matrix can be computed

using the following relations:

M
C11

(_1 I(X)

Cu(xaa) dxdydz (i =2,...,6)

(32))

A similar procedure can be implemented to determine the second and third columns of the

homogenous stiffness matrix [cM].

A slightly different averaging scheme is used when the unit-cell is subjected to shear

strains on the macrolevel. Consider the case where the unit-cell is subjected to unit 7yzM at

macroscale. Assume that all the other components of strain at the macrolevel, mesolevel and

microlevel are zero, i.e.,

e_ = ei = ei = 0 i _4 (33)

where E4 = 7yz. We also assume that the shear stress is constant in a slice such that Xyz(X,y,z)

= _yz(X). The shear compliance of a slice can then be obtained by averaging the shear

compliances of all the elements in the slice as:

l _ cff 1#_,f,(x) c44(x,y,z)ay az
(34)

The fourth column of the stiffness matrix Ci4M is obtained under the assumption that all the
slices are under a state of constant shear strain:

u 1 C_(x)
(i=1,...,6) (35)

A similar procedure is used to determine the fifth and sixth columns of [CM].
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5.2 SAM Results

A code was written in FORTRAN to implement SAM. The code (pTE_-10) was

used to predict the elastic constants for the seven examples, whose constituent material

properties are listed in Table 2. Input to the code were the unit-cell dimensions, yarn/fiber

geometry, constituent material properties, and the number of divisions required to discretize

the unit-cell in the x, y and z directions. The element stiffness matrix [C] was computed by

finding the constitutive stiffness matrix for the point at the center of the element, and

transforming it to the unit-cell coordinate system.

The results for the bimaterial medium (example 2) are given in Table 15. The

bimaterial medium consisted of two layers of isotropic materials stacked alternately in the z-

direction (Fig. 1). It can be observed that SAM marginally under-predicts the bimaterial

longitudinal and transverse Youngs moduli, while the inplane and transverse shear moduli are

exact. Table 16 presents the SAM results for two cases of unidirectional composite (examples

3 and 4). The fiber and matrix had identical poisson ratios in example 3, and different

poisson ratios in example 4. The elastic constants from SAM were compared with the finite
element results from Section 3.1 and with analytical solutions for a unidirectional composite

(the rule of mixtures formulae and the Halpin-Tsai equations). Table 17 compares the SAM

properties for three textile composites (examples 5, 6 and 7) with the previously computed

finite element results and other available results. In all three cases the elastic constants

obtained by implementing SAM were in good agreement with the available results.

6. CONCLUSIONS

Micromechanical models were demonstrated to predict the stiffness and strength

behavior of textile composites. In thin textile composites, the stress gradients through the

thickness were significant, and hence the composite was modeled as a homogeneous

plate/beam rather than homogeneous continua. The beam model was first discussed to present

the issues involved in computing the structural stiffness and strength properties. Then the

plate model was presented for computing the plate stiffness and plate CTE's, and to predict

the failure envelope for a thin textile composite. The failure envelope for a thin textile

composite was described in the space of the force and moment resultants instead of the space

of the macroscopic stresses. It was shown for various examples, that the plate properties could

not be predicted from the corresponding continuum properties.

In the models using finite elements (Section 3), the periodic BC's were enforced for

continuity of tractions and displacements across the unit-cell boundaries. Therefore the finite

element results for the stiffness properties could be expected to be very accurate. However

due to difficulties in mesh generation, the unit-cell for the 3-D continuum and the plate

models were discretized into inhomogeneous finite elements (elements with one or more

constituent materials). Thus the stresses in the vicinity of the yarn-matrix interface for the

above models may be approximate. For the beam model, however, the unit-cell was
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discretized into homogeneous elements.

The Selective Averaging Method (SAM) discussed in Section 6 was based on a

combination of isostress and isostrain assumptions. The method was fast and easy to

implement and suitable for parametric studies such as yam preform selection. Extension of

SAM to predict the continuum CTE's, plate stiffness and plate CTE's is straightforward and is

underway.
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Table 1. Non-zero BC's Imposed to Obtain 3-D Thermo-Elastic Constants

1

stiffness coefficients to be obtained non-zero BC's

first column of [C] (eJ _ = 1 ) u/L v x 2, xs) - u/O, x 2, x3) = L 1

second column of [C] (1_22M = 1 ) U2(XI, L 2, xs) - u2(x I, O, x3) = L 2

third column of [C] (e331_ = 1 ) u3(xv x2, L3) - u/xv x2, O) = L 3

(fourth column of [C] T23 = 1) u2(xl, x2, L3) - u2(xl, x2, 0) = L/2

u3(x I, L 2, x3) - u3(x 1, O, x3) = L2/2

fifth column of [C] (TJ _ = 1) u/x v x 2, L3) - u/x v x 2, O) = L/2

u3(Lv x2, x3) - u3(O, x2, x3) = L1/2

sixth column of [C] (T12M = 1) u/xv L2, x3) - u/xl, O, x3) = L/2

u2(L v x2, x3) - u2(O, x2, x3) = L/2

CTE's (AT _ = 1) AT = 1

I I
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Table 2. Properties of Constituent Materials for Examples 1-7

Example 1 E = 10 GPa, v=0.3, ¢x=lOxlO6/°C

unit-cell size: 0.500xO.500xO.256 mm

Example 2

Example 3

Example 4

Example 5

Examples 6, 7

layer 1 (E-glass):

layer 2 (epoxy):

unit-cell size:

E1=70 GPa, V1=0.200, (Xl= 5x10"6/°C, t/1=0.5

E2=3.50 GPa, v2=0.350, (x2= 60x106/°C, "¢'2=0.5

0.500x0.500×0.256 mm

fiber:

matrix:

unit-cell size:

E,=IO0 GPa, vy=0.300, %= lOxlO6 /°C, Vt=0.6

Em=lO GPa, V,,=0.300, ¢Xm= lOOxlO6 /°C

lOxlOxlO Izm

fiber (E-glass):

matrix (epoxy):

unit-cell size:

El=70 GPa, Vj=0.200, ¢xt= 5x106/°C, Vj=0.6

E_=3.50 GPa, vm=0.350, ¢x_= 60x106/°C

lOxlOxlO lzm

yarn properties (glass-epoxy):

EL=58.61 GPa, Er=14.49 GPa, GLr=5.38 GPa, VLr=0.250

Vrr=0.247, ¢XL=6.15xlO 6 / °C, ff.r=22.64x10 "6 / °C, _¢'t=0.26

matrix properties (epoxy):

E=3.45 GPa, v=0.37, ¢x=69xlO 6 / °C

unit-cell size: 1.680×1.680×0.228 mm

yarn properties (graphite-epoxy):

EL=144.80 GPa, Er=11.73 GPa, GLr=5.52 GPa, VLr=0.230

Vrr=0.300, O_L= -0.324x10 6 / °C, %=14.00x10 "6 / °C, Vj=0.64

matrix properties (epoxy):

E=3.45 GPa, v=0.35, (x=4OxlO 6 / °C

unit-cell size: 2.822×2.822×0.2557 mm (Example 6)

7.055× 7.055×0.2557 mm (Example 7)
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Table 3. 3-D Properties for Examples 1 and 2 using Finite Elements

Example 1

(isotropic

medium)

Example 2

(bimaterial

medium)

Ex, Ey E Z Gxz, G_y Vx_,

(GPa) (GPa) G_z (GPa) vyz

(GPa)

pTEz.20 10 10 3.85 3.85 0.300

(FEA)

exact 10 10 3.85 3.85 0.300

solution

pTEz-20

(FEA)

exact

solution

Vxy

0.300

0.300

36.79 9.79 2.48 15.23 0.312 0.208

36.79 9.79 2.48 15.23 0.312 0.208

¢x__, %_x a_Sxl0_
10-6/°C /°C

10 10

10 10

8.19 59.60

8.19 59.60

Table 4. 3-D Properties for Examples 3 and 4 using Finite Elements

Example 3

(unidirect.

composite)

Example 4

(unidlrect.

composite)

EL Er GLr Grr VLT

(GPa) (GPa) (GPa) (GPa)

pTE_.20 63.55 36.48 12.93 9.94 0.300

(FEA)

rule of

mixt./

Halpin-

Tsai eqns.

pTEz-20

(FEA)

rule of

mixt./

Halpin-

Tsai eqns.

64 34.55 11.26 0.300

43.12 18.15

43.40 14.79

5.59

4.45

VTT

0.232

0.300

3.92 0.242 0.222

0.260 0.252

(xL a T

xl0 "6 PC xl06/°C

15.74 40.79

15.63 55.11

7.40 25.44

6.77 34.24
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Table 5. 3-D Properties for Examples 5, 6 and 7 using Finite Elements

Example 5

(plain-

weave)

Example 6

(plain-

weave)

Example 7
(5-harness

weave)

pTE_-20

(FEA)

Dasgupta
results

TEXCAD

#TEz.20
(FEA)

TEXCAD

Ex, Ey E z Gxz, Gxy Vxz, vyz

(GPa) (GPa) Gyz (GPa)
(Gea)

11.55

14.38

6.26 1.94 2.12 0.399 0.186

6.25 1.94 3.94 0.463 0.167

58.27 10.92 4.32 4.84 0.363 0.097

64.38 11.49 5.64 4.87 0.396 0.027

62.51 11.02 4.45 4.80 0.349 0.047

66.33 11.51 4.93 4.89 0.342 0.034

_xS,%Sx cxz_x
10-6PC 10-6PC

29.75 75.82

22.5 86

1.47 23.15

1.33 20.71

1.58 23.18

1.46 21.24
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Table 6. Periodic Displacement BC's for Beam Stiffness Coefficients

u(L,z)-u(O,z) w(L,z)-w(O,z) AT

Case i. unit axial strain (e0M=I) L 0 0

Case ii. unit curvature (k'M=l) LZ -L2/2 0

Case iii. unit shear strain (ToM=l) 0 L 0

Table 7. Constituent Material Properties for Beam Examples

isotropic
beam

bimaterial

beam

plain-weave
textile beam

E = 10 GPa, v = 0.30, o_ = 10xl0 -6/°C

E 1 = 70 GPa, v 1 = 0.33, tx I = 23x10 -6/°C

E 2 = 3.5 GPa, v 2 = 0.35, a 2 = 60x10 6 PC

yarn:

E 1 = 159 GPa, E 2 = 10.9 GPa, G12 = 6.4 GPa, v12 = 0.38,

v2_ = 0.38, Ct1 = 0.045x10 "6/°C, o_2 = 20.2x10 -6/°C where the yarn

direction is parallel to the/-axis and 23-plane is the plane of

isotropy.

matrix:

E m = 3.5 GPa, Vm = 0.35, a m _-_ 60X10 "6/°C.
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Table 8. Comparison of Beam Stiffness Coefficients and CTE's (SI Units)

isotropic
beam

bimaterial

beam

plain-
weave

textile

beam

unit-cell

analysis

beam

theory

unit-cell

analysis

beam

theory

unit-cell

analysis

mosaic

model

El I

19.78x106

19.78x106

74.29x106

74.29x106

27.76x106

71.48xl 0 .6

K33 ap fC

5.96x106 10x10 .6 0

0 5.34 5.77x108

30.20x103 20.06

30.20x103 20.06

0 5.41

0 8.13

10xl 0.6

au fC

8.47xl 06 30.73xl 0.6 -14.62xl 0.3

8.62xl 06 30.74xl 0.6 -14.63xl 0.3

9.21x106 12.66x10 °6 -24.12x10 6

8.14x106 4.39x10 6 0

K13, K2_ and (xv are zero for all cases

Table 9. Comparison of Beam CTE's for Plain-weave Textile Beam

CTE's from CTE's from % error

beam model continuum model

(Xp x 10 6 °/C 12.66 11.30 -10.46

o_M x 10 _ °/C/m -24.12 0 100

(_v °/C 0 0
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_--y

Table 10. Periodic Displacement BC's Imposed on the Lateral Faces of the Plate Unit-cell

u(a,y)- v(a,y)- w(a,y)- u(x,b)- v(x,b)- w(x,b)- AT

u(O,y) v(O,y) w(O,y) u(x, O) v(x, O) w(x, O)

1. e_oU=l a 0 0 0 0 0 0

2. o o o o b 0 0

3. YxyoM=l 0 a/2 0 b/2 0 0 0

4. _M=I az 0 -a2/2 0 0 0 0

5. NM=I 0 0 0 0 bz -b2/2 0

6. r_yM=l 0 az/2 -ay/2 bz/2 0 -bx/2 0

7. AT_=I 0 0 0 0 0 0 1
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Table 11. Non-zero [A], [B] and [D] Coefficients for Example 1 (Isotropic Plate) using
Finite Elements

All

xlO6

pTEz-20 2.810
(FEA)

lamination 2.810

theory

AI2 A22 A_6

xl0 6 xl0 6 xl0 6

0.843 2.810 0.983

0.843 2.810 0.983

Dll

xl0 "3

D12

xl0 "3

D22

xl0 "3

15.320 4.606 15.320

15.310 4.593 15.310

D. %"
xl0 "3 xl0"6PC

5.358 10

5.358 10

[A], [B] and [D] coefficients in SI units

Table 12. Non-zero [A], [B] and [D] Coefficients for Example 2 (Bimaterial Plate) using
Finite Elements

An, A22 AI2 A66 Bll, B2z B12 B66
xl06 x106 xl06 xl03 xl03 xl0 "3

pTE_-20 9.832 2.043 3.895 - 0.563 - 0.108 - 0.228

(FEA)

lamination theory 9.832 2.043 3.895 - 0.563 - 0.108 - 0.228

for two plies

lamination theory

using 3-D elastic
constants

9.844 2.048 3.899 0 0 0

pTEz-20

(FEA)

lamination theory for

two plies

lamination theory

using 3-D elastic

constants

DII, D22
xl0 "3

53.590

53.573

53.762

D12

xl0 "3

11.149

11.131

11.183

D66

Xl0 "3

21.220

21.220

21.293

xlO "6PC

17.800

17.814

8.190

/°Clm

0.170

0.170

0
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Table 13. Non-zero [A], [B] and [D] Coefficients for Examples 3 and 4 (Unidirectional

Composite) using Finite Elements

Example 3

Example 4

Halpin-Tsai eqns.

and lamination

theory

ItTEx-20

(FEA)

Halpin-Tsai eqns.

and lamination

theory

All

xIO 6

0.690

0.673

0.452

0.444

A12

xlO 6

0.149

0.109

0.062

0.039

A22

xlO 6

0.496

0.363

0.285

0.151

A66

xlO 6

0.177

0.113

0.114

0.045

D11 DI2 D22 D66 O_xPx o_?x

xlO "6 xlO "6 xIO "6 xlO "6 10 .6 10 .6

ttTEx-20 3.589 0.596 1.980 0.947 15.489 26.184

(FEA)

Example 3

Example 4

Halpin-Tsai

eqns. and
lamination

theory

#TEx-20

(FEA)

Halpin-Tsai

eqns. and

lamination

theory

5.606

2.256

3.702

0.908

0.224

0.328

3.026

0.873

1.262

0.939

0.568

0.371

15.625

7.378

6.774

55.112

13.188

34.239

[A], [B] and [D] coefficients in SI units
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Table 14. Non-zero [A], [B] and [D] Coefficients for Examples 5, 6 and 7 using Finite
Elements

A n, Azz A12 A_ B n xl0 3
xl0 6 xl0 i xl0 _

g

pTEz.20 2.630 0.598 0.511 0
(FEA)

Example 5
lamination theory 2.728 0.508 0.483 0

using 3-D constants

pTEz.20 12.750 3.332 1.237 0
(FEA)

Example 6
lamination theory 15.040 1.461 1.237 0

using 3-D constants

liTEr-20 15.362 1.065 1.228 0.515"

(FEA)

Example 7
lamination theory 16.020 0.756 1.228 0

using 3-D constants

Example 5

Example 6

Example 7

#TEz.2O
(FEA)

lamination theory

using 3-D constants

pTEx-20

(FEA)

lamination theory

using 3-D constants

#TEz-20

(FEA)

lamination theory

using 3-D constants

* In example 7, Bz2= -Bn and l_f = -13_

8.564

11.816

53.912

81.948

107.390

87.283

D/2

xl0 "3

1.555

2.203

0.413

7.962

2.072

4.122

D66

XI0 "3

2.142

2.093

4.421

6.740

5.814

6.691

xl0" PC

28.310

29.752

1.418

1.471

2.191

1.580

[A], [B] and [D] coefficients in SI units

II I

PC/m

0

0

0

-0.018"
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Table 15. SAM Results for Examples 1 and 2

Example 2

(bimaterial

medium)

pTE_.IO

(SAM)

exact

solution

(GPa)

36.03

36.79

(GPa)

8.72

9.79

G_, Grz
(GPa)

2.48

2.48

(GPa)

15.23

15.23

0.599

0.312

0.183

0.208

Table 16. SAM Results for Examples 3 and 4

Example 3

(unidirectional

composite)

Example 4

(unidirectional

composite)

pTEz.IO

(SAM)

pTEx.20

(FEA)

rule of

mixt./Halpin-

Tsai eqns.

pTEz.IO

(SAM)

pTEz-20

(FEA)

rule of

mixt./Halpin-

Tsai eqns.

EL
(GPa)

64

63.55

64

43.23

43.12

43.40

E T

(GPa)

40.51

36.48

34.55

22.11

18.15

14.79

GLT

(GPa)

11.17

12.93

11.26

4.43

5.59

4.45

GTT

(GPa)

8.36

9.94

3.06

3.92

VLT

0.245

0.300

0.300

0.159

0.242

0.260

VTT

0.300

0.233

0.300

0.237

0.222

0.252

I
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Table 17. SAM Results for Examples 5, 6 and 7

Example 5

(plain-

weave)

pTE_.IO

(SAM)

pTE_.20

(FEA)

E.E,
(GPa)

11.52

11.55

Ez
(GPa)

6.48

6.26

GXZ GyZ

(GPa)

1.60

1.94

Gxy

(GPa)

1.60

2.12

Dasgupta 14.38 6.25 1.94 3.94

results

pTEx-IO 64.49 11.37 3.97 4.26

Example 6 (SAM)

(plain-
weave) pTE_-20 58.27 10.92 4.32 4.84

(FEA)

TEXCAD 64.38 11.49 5.64 4.87

pTEz.IO 65.61 11.14 3.66 4.44

Example 7 (SAM)

(5-harness
weave) pTE_-20 62.51 11.02 4.45 4.80

(FEA)

TEXCAD 66.33 11.51 4.93 4.89

Vxz9

0.396

0.399

0.463

0.398

0.378

0.396

0.363

0.349

0.342

0.171

0.186

0.167

0.027

0.098

0.027

0.032

0.047

0.034
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(a) (b)

Figure 1. (a) bimaterial medium; (b) bimaterial unit-cell.

/
0000
o_oo
0000

Z

x/

(a) (b)

Figure 2. (a) unidirectional composite; (b) unit-cell for the composite.
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Figure 3. Yarn pattern in a plain weave preform (unit-cell boundary in dotted lines).

Figure 4. Yarn pattern in a 5-harness satin weave preform (unit-cell boundary in dotted lines).
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(a) (b)

Figure 5. (a) Layered medium; (b) bimaterial beam.
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(a)

(b)

(c)

(d)

(e)

Figure 6. Textile beam: (a) undeformed unit-cell and deformation under: (b) unit extensional

strain; (c) unit curvature; (d) unit shear strain, top and bottom surfaces are traction free; (e) unit

shear strain, tractions allowed on top and bottom surfaces. (not to scale)
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(c)
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0 6.0E-4 1.2E-3 1.8E-3 2.4E-3 3.0E-3 3.6E-3

Figure 7. Thermal microstress contours in a plain weave beam for AT = -150°C: (a) o=; (b) o_:;

(c)
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Figure 8. Beam failure envelope based on yarn failure•
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Figure 9. Beam failure envelope based on matrix failure.
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Figure 10. Comparison of failure envelopes based on yarn failure.
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Figure 11. Comparison of failure envelopes based on matrix failure.
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Figure 12. Hierarchy of discretization for a unit-cell to implement SAM: (a) unit-cell

(macrolevel); (b)slice (mesolevel); (c) element (microlevel).
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